学习K-Means 聚类算法
https://www.nvidia.cn/glossary/k-means/
https://zhuanlan.zhihu.com/p/357072839
聚类与分类的区别
分类:类别是已知的,通过对已知类别的数据进行训练和学习,找到这些不同类的特征,再对未知类别的数据进行分类。属于监督学习。
聚类:事先不知道数据会分为几类,通过聚类分析将数据聚合成几个群体。聚类不需要对数据进行训练和学习。属于无监督学习。
关于监督学习和无监督学习,这里给一个简单的介绍:一般而言,是否有监督,就看输入数据是否有标签,输入数据有标签,则为有监督学习,否则为无监督学习。
K-means 聚类原理简述
聚类算法有很多种,K-Means 是聚类算法中的最常用的一种,算法最大的特点是简单,好理解,运算速度快,但是只能应用于连续型的数据,并且一定要在聚类前需要手工指定要分成几类。
K-Means 聚类算法的大致思想就是“物以类聚,人以群分”:
- 首先输入 k 的值,即我们指定希望通过聚类得到 k 个分组;
- 从数据集中随机选取 k 个数据点作为初始大佬(质心);
- 对集合中每一个小弟,计算与每一个大佬的距离,离哪个大佬距离近,就跟定哪个大佬;
- 这时每一个大佬手下都聚集了一票小弟,这时候召开选举大会,每一群选出新的大佬(即通过算法选出新的质心);
- 如果新大佬和老大佬之间的距离小于某一个设置的阈值(表示重新计算的质心的位置变化不大,趋于稳定,或者说收敛),可以认为我们进行的聚类已经达到期望的结果,算法终止;
- 如果新大佬和老大佬距离变化很大,需要迭代3~5步骤。
实例演示
看了上面的原理简述,估计还是有点糊涂,下面举一个非常形象简单的例子。
如下图所示,有6个点,从图上看应该可以分成两堆,前三个点一堆,后三个点另一堆。现在我手工地把 k-means 计算过程演示一下,同时检验是不是和预期一致:

1. 设定 k 值为2;
2. 选择初始大佬(就选 P1 和 P2);
3. 计算小弟与大佬的距离:

从上图可以看出,所有的小弟都离 P2 更近,所以次站队的结果是:
A 组:P1
B 组:P2、P3、P4、P5、P6
4. 召开选举大会:
A 组没什么可选的,大佬就是自己;
B 组有5个人,需要重新选大佬,这里要注意选大佬的方法是每个人 X 坐标的平均值和 Y 坐标的平均值组成的新的点,为新大佬,也就是说这个大佬是“虚拟的”。
因此,B 组选出新大哥的坐标为:P 哥 ((1+3+8+9+10)/5, (2+1+8+10+7)/5)=(6.2, 5.6)。
综合两组,新大哥为 P1(0,0),P哥(6.2,5.6),而P2-P6重新成为小弟。
5. 再次计算小弟到大佬的距离:

这时可以看到P2、P3离P1更近,P4、P5、P6离P哥更近,所以第二次站队的结果是:
A 组:P1、P2、P3
B 组:P4、P5、P6(虚拟大哥这时候消失)
6. 第二届选举大会:
同样的方法选出新的虚拟大佬:P哥1(1.33,1),P哥2(9,8.33),P1-P6都成为小弟。
7.第三次计算小弟到大佬的距离:

这时可以看到 P1、P2、P3 离 P哥1 更近,P4、P5、P6离 P哥2 更近,所以第二次站队的结果是:
A 组:P1、P2、P3
B 组:P4、P5、P6
我们可以发现,这次站队的结果和上次没有任何变化了,说明已经收敛,聚类结束,聚类结果和我们最开始设想的结果完全一致。
K-means 聚类简易应用示例
关于 K-Means 的算法具体代码,网上有各种版本,这里就不赘述了,下面结合 MATLAB 中的一些函数给出一个较为简洁的版本:
X2 = zscore(X); % zscore方法标准化数据
Y2 = pdist(X2); % 计算距离(默认欧式距离)
Z2 = linkage(Y2); % 定义变量之间的连接,用指定的算法计算系统聚类树
T = cluster(Z2,6); % 创建聚类
H = dendrogram(Z2); % 作出系谱图(散点聚类图看腻了,这里画个系谱图)

当然,MATLAB 以及 sklearn 也提供了相应的 kmeans() 函数可供直接聚类使用,详细参数细节可参考其文档。
Post Link: 学习K-Means 聚类算法